$(a\cdot b)^n=a^n \cdot b^n$
Oppgave 1
-
\begin{align}(xy^2)^3=x^3\cdot y^{2\cdot 3}=x^3y^6\end{align}
-
\begin{align}(x^2 y)^2=x^{2\cdot 2}\cdot y^2=x^4y^2\end{align}
-
\begin{align}(a^2b^2c)^2=a^{2\cdot 2}\cdot b^{2\cdot 2}\cdot c^2=a^{4}b^{4}c^2\end{align}
-
\begin{align}
(a^3b^2)^{-1}
&=a^{3\cdot (-1)}\cdot b^{2\cdot (-1)}\\
&=\frac{1}{a^3b^2}
\end{align}
Oppgave 2
-
Løsningsforslag:
\begin{align}(a^2)^{-3}
&=a^{2\cdot (-3)}\\
&=a^{-6}\\
&=\frac{1}{a^6}
\end{align} -
\begin{align}
(x^2)^7
&=x^{2\cdot 7}\\
&=x^{2\cdot 7}\\
&=x^{14}
\end{align} -
\begin{align}
(a^2)^3
&=a^{2\cdot 3}\\
&=a^6
\end{align} -
\begin{align}
(b^2)^{-1}
&=b^{2\cdot (-1)}\\
&=b^{-2}\\
&=\frac{1}{b^2}
\end{align}
Oppgave 3
-
\begin{align}
(x^2)^3
&=x^{2\cdot 3}\\
&=x^6
\end{align} -
\begin{align}
(x^4)^5
&=x^{4\cdot 5}\\
&=x^{20}
\end{align} -
\begin{align}
(a^3)^5
&=a^{3\cdot 5}\\
&=a^{15}
\end{align} -
\begin{align}
(a^{-1})^4
&=a^{(-1)\cdot 4}\\
&=a^{-4}\\
&=\frac{1}{x^4}
\end{align}
Oppgave 4
-
\begin{align}
(x^{-2})^{-3}
&=x^{(-2)\cdot (-3)}\\
&=x^6
\end{align} -
\begin{align}
(b^3)^{-5}
&=b^{3\cdot(-5)}\\
&=b^{-15}\\
&=\frac{1}{b^{15}}
\end{align} -
\begin{align}
((b^2)^3)^2
&=b^{2\cdot 3\cdot 2}\\
&=b^{12}
\end{align} -
\begin{align}(y^{14})^{-2}=y^{14\cdot (-2)}=y^{-28}=\frac{1}{y^{28}}\end{align}
Oppgave 5
-
\begin{align}
(xy^2)^3
&=x^3\cdot y^{2\cdot 3}\\
&=x^3y^6
\end{align} -
\begin{align}
(x^2y)^2
&=x^{2\cdot 2}y^2\\
&=x^4y^2
\end{align} -
\begin{align}
(a^2b^2c)^2
&=a^{2\cdot 2}b^{2\cdot 2}c^2\\
&=a^4b^4c^2
\end{align} -
\begin{align}
(a^3b^2)^{-1}
&=a^{3\cdot (-1)}b^{2\cdot(-1) }\\
&=a^{-3}b^{-2}\\
&=\frac{1}{a^3b^2}
\end{align}
Oppgave 6
-
\begin{align}
(a^{-1})^{-3}
&=a^{(-1)\cdot (-3)}\\
&=a^3
\end{align} -
\begin{align}
(ab)^7
&=a^7b^7
\end{align} -
\begin{align}
(a\cdot b\cdot c)^3
&=a^3b^3c^3
\end{align} -
\begin{align}(ab^2c^3)^{-1}=\frac{1}{ab^2c^3}\end{align}