• \begin{align}((x^2+3)^7)'&=7(x^2+3)^6\cdot (x²+3)’\\&=7(x^2+3)^6\cdot 2x\\&=14x(x^2+3)^6\\\end{align}

  • \[(e^{2x})' = 2e^{2x} \]

  • \[ (\ln(x^2 + 2))' = \frac{1}{x^2 + 2} \cdot (x^2 + 2)' = \frac{1}{x^2 + 2} \cdot 2x = \frac{2x}{x^2 + 2} \]